Sandia National Laboratories

Matching algorithms with physics:

exact sequences of finite element spaces

Pavel B. Bochev, Allen C. Robinson

Sandia National Laboratories

Albuquerque, NM 87185

pbboche@sandia.gov, acrobin@sandia.gov

Jonathan Hu and Ray Tuminaro

Sandia National Laboratories,

Livermore, CA 94551

jhu@ca.sandia.gov, tuminaro@ca.sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000.




Outline

e The z-pinch: a simple idea with a complicated model

e Stability of multiphysics models: “the world is not enough”

e Magnetic Diffusion I: the rise and fall of potentials

— Two or one potentials?
— The art of gauging

— So what went wrong (and why)??

e Magnetic Diffusion II: Matching algorithms with the physics:
— De Rham complex and Tonti diagrams
— Discrete De Rham complex

— It works!!




Z-Pinch Physics on Z at Sandia

Z-pinch Components

e radiation transport

e clectromechanics resistive MHD Emmsmﬁmﬁ diffusion

e solid dynamics

Allegra
o A parallel ALE coupled physics code o unstructured hexahedral grids
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A taxonomy of discretization defects

Strong threats

advection

as stability threats

symmetric stencil

saddle point

oscillations

e A recipe for disaster: loss of stability almost surely will happen

Weak (subtle) threats

equal order FE

V-B#0

unstable FEM

magnetic monopoles

nonphysical modes

e May or may not lead to failure

iy nonphysical effects

e May be tolerated in simple, single component models




Stability and multiphysics models

In coupled multiphysics models

e ALL discretization defects are potentially dangerous

V-B#0

nonphysical modes

innacurate Lorentz/Joule

wrong kinematics/energy

polluted transients

wrong transient /static?
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In coupled multiphysics models

e ALL discretization defects are potentially dangerous
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e Remedies that work in simple models are not enough anymore:
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Stability and multiphysics models

In coupled multiphysics models

e ALL discretization defects are potentially dangerous

V-B#0

innacurate Lorentz/Joule wrong kinematics/energy

nonphysical modes

polluted transients

wrong transient /static?

e Remedies that work in simple models are not enough anymore:

advection of B

upwinding

CURRENT REVERSALS

1

ﬁwsu\ oscillations

Since many of these defects are caused by

inconsistencies between physics and discretizations

a sensible approach would be to

Match physics and discretization!
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Magnetic Diffusion: design specifications

Physics:

e state transitions: solid — melt — plasma

e highly heterogeneous media, especially o:
Osolid=high —  Omelt=low ~7  Oplasma=high
e non-static void-material interface
Required:

e accurate I x B and J- E

e correct time scale for B diffusion

Possible approaches:

e use potentials to ensure V- B =0

12



Magnetic Diffusion: the candidate model

Differential equations

in <+ Ampere
in €2
in <« Faraday

in €2

Boundary conditions

n-B . n x E, on I'* (Type I)

n x H : n-J, on I' (Type II)

Constitutive equations
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The two magnetic potentials

In void:

1. Faraday’s law:

no current —

2. Ampere’s Theorem:

Now substitute
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In conductors:

1. Faraday’s law:

0B 0A

2. Ampere’s Theorem:

waﬁxb»

Add boundary and interface conditions. ..
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Conductor

Interface I'y¢

1n @Q
H;, x n on Type 2

on Type 1

n @2@

H;, x n on Type 2
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The (A, ) approach works great for eddy-currents:
o(x) in conductors

n.Bl=0 [Mn=H]=0
0 in void (air)

Interface conditions

[n-B]=0 and [nxH]=0 onI'yc
The catch

e The static interface between conductor and void

A remedy

Type 1:n=E
e introduce fudged “void conductivity” to transport B across void

e discard ¢ and use A everywhere

The price: Must deal with a single, highly heterogeneous conductor:

0<omin <o(X,t) <opax and O << Tpnae
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Magnetic vector potential formulations

Ungauged A — ¢ cquations

V X wﬂ X A+0(%+ Vo) in ) <« Ampere

w<x>x= H,xn onT
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Magnetic vector potential formulations

Ungauged A — ¢ cquations

V X wﬂ X A+0(%+ Vo) in ) <« Ampere

V- (o(%+V9)) inQ « V-J=0

w<x>x= H,xn onl

IQA@%.TQ@VXS E,xn onI™
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qxw<x>+q§

e In the static limit

V-0V
o field recovery is not affected: VxA=Vx(A+Vyg)
o numerical solution may be affected:

0A/Ot — 0 = ill-conditioned (or singular) FEM lincar system

e

reaching the static limit may be problematic

A remedy:

Impose a gauge = a set of conditions ensuring unique potential

20



Gauged formulations

The Coulomb gauge (Morisue, 82)

0 1in
0 onl, or

0O onl

e preferred for material discontinuities and multiply connected regions;
e hard to satisfy exactly numerically with nodal elements:

e cnforced by adding penalty like terms

21



The Lorentz gauge (Bryant, Emson, Trowbridge 85-90)

—po¢ in £}
0 only

k2uoly on T

e leads to non-symmetric weak problems unless o = const

—> use is restricted to homogeneous conductors when it is

equivalent to Coulomb gauge (Biro and Preiss 1990).

4

Neither gauge works for us!
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Modified A-formulation: Eliminate ¢ (Emson, Simkin 1983)

VA" =V x A

>*n>+\m§& .

@>*|@|>
% =5 T Vo

1 A*
4x|<x>*+qm‘
i ot

o 1mplied gauge: V.cA*=0 1n Q.
e in the static limit: V X wﬂ X A" =0

—> same difficulties arise as with the ungauged equations.
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Modified Lorentz gauge (Bochev, Robinson 99, Bossavit 99)

V-oA = —puo’p inQ

o = 0 onlI™

A-n = k’uol¢ onT

1 OA 1
VXx-VxA+oc——0V(—V-0A)=0 in Q.
v ot o>

e gives symmetric formulations

e works for smooth o but what about highly heterogeneous media?
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Model Problem in 2D

Type 1:nxE=0 Type 2 nxH=nxHp Type 1:nxE=0

Setting

e H=Hk and E=E,i+E,}j
o i~ d4r-107"7
® Oconductor = 63.3 X 10°

® Jyoid = 1

What must happen

® Igteady ~ 50 X 10~ %sec

. =63 3E+08
e skin current

p=47E-07

e “tent” solution at steady state

Type 2: nxH=0
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What happened?

The semi-discrete problem

M,A 4+ C,A =f

1 .
C,=(-VXxAVXA)+

1

e stability

(V-A,V-A)
AQ.SPQQ.QVV

gauge contribution

e transient time scales —  depend upon the eigenmodes (A, x)):

e the steady state

(AM, +C,)x =0
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The spectrum: ungauged problem

0.00001
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The spectrum: ungauged + curl
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The spectrum: ungauged 4+ Coulomb

0.00001
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Try a poor man’s RPM:

e guess the “bad” modes

e at each time step

project solution on Aa_om%uvk

0.00001 E
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Try a poor man’s RPM:

e guess the “bad” modes

e at each time step

project solution on A:_om%vk

0.00001 E

The catch:

e “Bad” modes may appear just at zero frequency

e But they may also pollute the whole numerical spectrum!! (see Boffi et. al. 1999)

4

Extremely hard to distinguish physical from non-physical modes
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The Maxwell’s “house”

De Rham complex relative to I

Hy(2, grad) {p € H2,grad) | ¢ =0 on I}
Hy(Q2, curl) {He HQ,curl) | nxH=0 onl}

Ho(Q, div) {Be HQ,div) |l n-B=0 onT}

The dual complex relative to I'*

H{(2, div) {Be HQ,div) |l n-B=0 onI"}

H{ (92, curl) {He HQ,curl) | nxH=0 on I}

H; (2, grad) {p € HQ,grad) | ¢ =0 on I}
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Tonti diagram

Faraday

33



The exactness property
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The exactness property

H(Q, grad) —= H(Q,curl) = H(, div) ~2 LA(Q)

What if we can find. ..
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Discrete Tonti diagram

Faraday

36



Discrete approximations of De Rham complex

Individual components of a discrete De Rham complex have been developed in different contexts

and for different elements:

Raviart-Thomas elements: (Raviart, Thomas, 1977)

e context = mixed methods (H(€2,div ) conforming)

e clement = n-simplex

Nedelec elements: (Nedelec, 1980-85)

e context = mixed methods (H(€2,div ), H(2, curl) conforming)

e element = brick, prism, rectangle

BDM elements: (Brezzi, Douglas, Marini, late 80s)

e context = mixed methods (H(€2,div ), H(2, curl) conforming)

e clement = brick, rectangle

37



Bossavit was first to recognize the importance of discrete

analogues of De Rham’s complex and to exploit exactness in

computational electromagnetics.

The Whitney complex: (Bossavit, 1979-1985)

e context = clectromagnetics (De Rham conforming)

e clement = n-simplex

Our approach extends the construction of

van Welij elements: (van Welij, 1985)

e context = eddy currents (H (€2, curl) conforming)

e clement = hexahedron (isoparametric brick)

to an exact sequence on arbitrary hexahedral grids.
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Exact sequences on hexahedral grids

Generalized hexahedrals

ﬁu:..umm..umwu __,..un_“_.u..un.m _..uﬁw_

B — { (11, 20, 73) = X} R = {(&1.6.6) = €}

Physical space Parameter space

F mww — R — smooth deformation of mww

~

K = F(K) — image of K = [—1,1] cR

39



Assume:

o F'= (F1, Fy, F3) is invertible when restricted to K

~

e G =(G1,Gy,G3) = F1issuch that G(K) = K
Base and reciprocal vectors
Jr (V1, Vo, V3)
Vi (V; x Vi)

AQQQ X QQwvmmﬁ nbu

V- VG =4

40

(VG1, VGs, VG3)T

(V; x Vi.)det Je




Nodes, edges, faces and a hex:

£ ={€=(x1,£1,£1)} —

&V ={6 =416 =41} —

£ = {6 ==*1}

and  x{ N xw Nx; = x""

41



af

Unit normal to face x! Unit tangent to edge x;,

Wi
IV
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“Basis” functions and spaces on K

WY - nodal WY = L1+ G)(1£G)(1+Gy)

1

W' - edge W’ (14 G)(1+G,)(VG)

L]

.S\m face we WAH + QLAQQQ X QQ\L

1

W3 - volume |14 VG, - (VG; x VGy)

A

“Basis” functions and spaces on K

~ ~

WY - nodal S\MMQ (1£&)AE£E)(1EE)

~

W? - edge W L1861 £&)(Vi x V) /det Jp

L]

W? - face we WC + &)V /det Jp

A ~

W3 - volume %% WS (Vi x Vi) /det Jp

43



The exactness property

afy aff oy va
qg\ﬁ\a QHS\Q I_IQMS\M.\A I_IQwS\NS

Vx WY = W+ eW!

VW = oW
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Degrees of freedom

node — point mass

J Wi

(x) - 0(x""")dx

1 if xfy = xoP

0 all other nodes

edge — circulation

e

L]

(x) - tdl =

st

: 3
1 if xi)' = x

0 all other edges
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Degrees of freedom

face — flux

3 K «
1 if x§ = x¢

(x) - ndS =

4
K
Xs

0 all other faces

hex — total mass
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Exact sequences on quadrilaterals

Set NﬂwAmv = Mw — a\w =k and QQw =k

QQH AS X Wv\Qmﬁ A\Nu QQM X QQw
QQM AW X Sv\Qmﬁ A\Nﬂ QQw X QQH

47




Basis on K

L1+ G)(1+G))

(1 £G)(VG))

L1+ G)(VG; x K)

VG, - (VG x k)

48

Basis on K

HUESDIE2S)
MAH + MLAS X Wv\Qmﬁ nbu
L1+ &)V /det Jp

Ms (V; x Vi) /det Jp =1




Exactness in two-dimensions

VW cW! and V-W?2cCcW? but Vx? q.w

The virtual edge functions

49



o 1 1 oG
Wl = SLEG)L£G)VG = (1£G)(1£G)) k=W Pk

3D edge BF 2D node BF

1
V X S\MQ - MAAH T QLAQQQ X Wv — AH + QQVAQQQ X va =V X S\M\m*

we — W) e w2

The first curl exactness relation:
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The parallel edge functions

| 2 on top face 1
—_—
Wit =1(1£G) (14+Gy) VG = J(1£G)VG; =Wy

3D Edge function 2D Edge function
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V x W5 1 =2VG x VG; =V x W™

+W e W3

The two flavors of curl exactness
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Solution of the eddy current equations

1. Choose Ampere’s or Faraday’s side in Tonti diagram:

2. Eliminate (H, J) from Ampere’s using constitutive laws:

Ampere Faraday

Ho(Q,curl) 1/uB <« (H=B <« B
V X : N

Hy(€Q, div) cE <« J=0E <« E Hi(£2, curl)
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3. Substitute with discrete De Rham structure:

Ampere Faraday

<<w H\%&Wb
V X

g\<H

weakly

exactly

\@Mw.qx@%|\umyxsv.w%n\@qm.@%
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Fully discrete equations

1. A .
A mwﬁqumi:| | (Hy, x n) - B dl

Bt - By
At

Solution

1. solve Faraday’s law ezactly for B}t

B/ =B} — AtV x E}TL

e V- -BY= — V .-B? =0 for all n!
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2. insert in weak Ampere’s Theorem to get equation for Eft:

~ At A
| OB By 4+ —(V x BT - (V x E;)d02
L4

1 ~ ~ A
= [,=Bi - (V x Ep)dQ — [ (Hy xn)-E,dl VE, € W

€ p

e This scheme resembles:

— Yee’s FDTD method (on bricks)
— CT FV method of Evans and Howley

— Mimetic schemes of Misha Shaskov

e It is not a mixed FEM, rather a “hybrid” between FEM and FV
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Model Problem in 2D

Type 1:nxE=0 Type 2 nxH=nxHp Type 1:nxE=0

Setting

e H=Hk and E=E,i+E,}j
o i~ d4r-107"7
® Oconductor = 63.3 X 10°

® Jyoid = 1

What must happen

® Igteady ~ 50 X 10~ %sec

. =63 3E+08
e skin current

p=47E-07

e “tent” solution at steady state

Type 2: nxH=0
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